Maths- Y11H
MAGHULL HIGH SCHOOL - CURRICULUM MAP

HALF TERM 2 NOV-DEC	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7 and 8
TOPIC (S)	Trigonometry recap and extension	Trigonometry recap and extension	Further equations and their graphs	Further equations and their graphs	Equation of a circle	Mocks	Mocks
Knowledge \& Skills development	Trigonometry - Know - Apply - Know - $\sin \theta=$ - Apply - Know - Know - Apply includi - Compa Further equati - solve I - solve quadra - find ap - recogn - identif - deduce - deduce - transla - derive Equation of a - recogn - find th	mula for Pythag nd lengths in rig e the trigonome osite, $\cos \theta=$ o find lengths in act values of \sin act value of \tan facts, triangle co hagoras Theore gths using ratio nd their graphs equations in one tic equations (in mula mate solutions us etch and interp interpret roots, algebraically ng points by com ple situations o uation, solve the d use the equat ation of a tangen	Theorem $a^{2}+b^{2}=c$ led triangles and, wh ratios $\frac{\text { jacent }}{\text { otenuse }}, \tan \theta=\frac{o p}{a d}$ angled triangles and $\cos \theta$ for $\theta=0^{\circ}, 30^{\circ}$ $0^{0}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ nce, similarity and p d use known results ion; make links to tri own algebraically, in g those that require graph: both linear aphs of linear functio epts and turning poi ng the square edures into algebraic tion and interpret th a circle with centre circle at a given poin	ere possible, genera osite acent where possible, gen $45^{\circ}, 60^{\circ}$ and 90° operties of quadrilat obtain simple proo onometric ratios luding those with th rearrangement) alge d quadratic s and quadratic fun ts of quadratic functior expressions or form solution the origin	triangles in two ral triangles in rals to conjectu s unknown on bo raically by: fact tions ns graphically lae	hree dimension nd three dimen d derive results des of the equa , completing the	res figures angles and sides are, using the

Assessment / Feedback Opportunities	Topic assessments	Self-assessment sheets	Homework	Formative teacher assessment - verbal	Retrieval practice	
Cultural Capital	Use of algebra to solve real life problems involving widely used quadratic graphs Application of trigonometry in real life problems including construction Discussion of the use of growth and decay in real life including science (diseases) finance					
SMSC / Promoting British Values (Democracy, Liberty, Rule of Law, Tolerance \& Respect)	Willingness to participate in, and respond to mathematical opportunities. Use of social skills in different contexts, including working and socialising with pupils from different religious, ethnic and socio-economic backgrounds.					
Reading opportunities	Mathematics in the Simpsons What's the point in Maths Humble pi					
Key Vocabulary	Trigonometry, Pythagoras, hypotenuse, opposite, adjacent, theta, ratio, sine, cosine, tangent, solve, equations, linear, quadratic, sketch, function, intercept, roots, turning point, tangent, radius, parallel, perpendicular,					
Digital Literacy	Microsoft Excel, DESMOS, Geogebra					
Careers	Architecture, Team Leader, Construction, Chef, Medicine, Engineer, Science, Finance.					

