Maths- Y12
MAGHULL HIGH SCHOOL - CURRICULUM MAP

HALF TERM 5 Apr-May	$\begin{gathered} \text { Week } 1 \\ \text { W/C } 18^{\text {th }} \text { April (1) } \end{gathered}$	$\begin{gathered} \text { Week } 2 \\ \text { W/C } 25^{\text {th }} \text { April (2) } \end{gathered}$	Week 3 W/C 2nd May (2)	Week 4 W/C $9^{\text {th }}$ May (2)	Week 5 W/C 16th May	Week 6 W/C 23rd May (2)
Units :-Pure :-Statistics :-Mechanics	Teaching Preparation \& Review of Units Teaching Preparation \& Review of Units Vectors	Teaching Preparation \& Assessment of units Teaching Preparation \& Assessment of units Vectors	Teaching Preparation \& Review of Units Teaching Preparation \& Review of Units Vectors	Teaching Preparation \& Assessment of Units Teaching Preparation \& Assessment of Units Vectors	Teaching Preparation \& Review of Units Teaching Preparation \& Review of Units Kinematics in one dimension	Assessments and the start of the School Moderation process Assessments and the start of the School Moderation process Kinematics in one dimension
Topics to be Reviewed.	Pure Statistics	- Algebraic manipulation - Polynomials and the Binomial Theorem - Differentiation - Integration Trigonometry - Exponentials and Logarithms - Argument and Proof - Sampling - Central tendency and spread - Single-variable data - Bivariate data - Probability - Binomial distribution - Formulating a test - The critical region Use vectors in two dimensions. Calculate the magnitude and direction of a vector and convert between component form and magnitude/direction form. Add vectors diagrammatically and perform the algebraic operations of vector addition and multiplication by scalars, and understand their geometrical interpretations. Understand and use position vectors; calculate the distance between two points represented by position vectors. Use vectors to solve problems in pure mathematics and in context, including forces. Kinematics in one dimension: Understand and use fundamental quantities and units in the S.I. system: length, time, mass. Understand and use derived quantities and units: velocity, acceleration, force, weight. Understand, interpret and extract information from diagrams and construct mathematical diagrams to solve problems, including in mechanics. Translate a situation in context into a mathematical model, making simplifying assumptions. Understand that a mathematical model can be refined by considering its outputs and simplifying assumptions. Understand and use modelling assumptions. Understand and use the language of kinematics: position; displacement; distance travelled; velocity; speed; acceleration. Understand, use and interpret graphs in kinematics for motion in a straight line: displacement against time and interpretation of				

		gradient; velocity against time and interpretation of gradient and area under the graph. Evaluate, including by making reasoned estimates, the limitations of solutions. Use a mathematical model with suitable inputs to engage with and explore situations (for a given model or a model constructed or selected by the student). Interpret the outputs of a mathematical model in the context of the original situation (for a given model or a model constructed or selected by the student). Understand that a mathematical model can be refined by considering its outputs and simplifying assumptions. Understand, use and derive the formulae for constant acceleration for motion in a straight line. Use a mathematical model with suitable inputs to engage with and explore situations (for a given model or a model constructed or selected by the student). Interpret the outputs of a mathematical model in the context of the original situation (for a given model or a model constructed or selected by the student). Use calculus in kinematics for motion in a straight line: $v=\mathrm{dr} / \mathrm{dt}, \mathrm{a}=\mathrm{dv} / \mathrm{dt}, \mathrm{r}=\int \mathrm{vdt}, \mathrm{a}=\int \mathrm{vdt}$.

